skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bell, Jennifer K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2026
  2. Abstract Knowledge of how habitat restoration shapes soil microbial communities often is limited despite their critical roles in ecosystem function. Soil community diversity and composition change after restoration, but the trajectory of these successional changes may be influenced by disturbances imposed for habitat management. We studied soil bacterial communities in a restored tallgrass prairie chronosequence for >6 years to document how diversity and composition changed with age, management through fire, and grazing by reintroduced bison, and in comparison to pre-restoration agricultural fields and remnant prairies. Soil C:N increased with restoration age and bison, and soil pH first increased and then declined with age, although bison weakened this pattern. Bacterial richness and diversity followed a similar hump-shaped pattern as soil pH, such that the oldest restorations approached the low diversity of remnant prairies. β-diversity patterns indicated that composition in older restorations with bison resembled bison-free sites, but over time they became more distinct. In contrast, younger restorations with bison maintained unique compositions throughout the study, suggesting bison disturbances may cause a different successional trajectory. We used a novel random forest approach to identify taxa that indicate these differences, finding that they were frequently associated with bacteria that respond to grazing in other grasslands. 
    more » « less